Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4066, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744885

RESUMEN

Terrestrial geothermal springs are physicochemically diverse and host abundant populations of Archaea. However, the diversity, functionality, and geological influences of these Archaea are not well understood. Here we explore the genomic diversity of Archaea in 152 metagenomes from 48 geothermal springs in Tengchong, China, collected from 2016 to 2021. Our dataset is comprised of 2949 archaeal metagenome-assembled genomes spanning 12 phyla and 392 newly identified species, which increases the known species diversity of Archaea by ~48.6%. The structures and potential functions of the archaeal communities are strongly influenced by temperature and pH, with high-temperature acidic and alkaline springs favoring archaeal abundance over Bacteria. Genome-resolved metagenomics and metatranscriptomics provide insights into the potential ecological niches of these Archaea and their potential roles in carbon, sulfur, nitrogen, and hydrogen metabolism. Furthermore, our findings illustrate the interplay of competition and cooperation among Archaea in biogeochemical cycles, possibly arising from overlapping functional niches and metabolic handoffs. Taken together, our study expands the genomic diversity of Archaea inhabiting geothermal springs and provides a foundation for more incisive study of biogeochemical processes mediated by Archaea in geothermal ecosystems.


Asunto(s)
Archaea , Genoma Arqueal , Manantiales de Aguas Termales , Metagenoma , Metagenómica , Filogenia , Manantiales de Aguas Termales/microbiología , Archaea/genética , Archaea/clasificación , China , Metagenómica/métodos , Biodiversidad , Concentración de Iones de Hidrógeno , Azufre/metabolismo , Temperatura , Ecosistema
2.
Artículo en Inglés | MEDLINE | ID: mdl-38530347

RESUMEN

A Gram-stain-negative, non-endospore-forming, motile, short rod-shaped strain, designated SYSU G07232T, was isolated from a hot spring microbial mat, sampled from Rehai National Park, Tengchong, Yunnan Province, south-western China. Strain SYSU G07232T grew at 25-50 °C (optimum, 37 °C), at pH 5.5-9.0 (optimum, pH 6.0) and tolerated NaCl concentrations up to 1.0 % (w/v). Phylogenetic analysis based on the 16S rRNA gene sequences revealed that strain SYSU G07232T showed closest genetic affinity with Chelatococcus daeguensis K106T. The genomic features and taxonomic status of this strain were determined through whole-genome sequencing and a polyphasic approach. The predominant quinone of this strain was Q-10. Major cellular fatty acids comprised C19 : 0 cyclo ω8c and summed feature 8. The whole-genome length of strain SYSU G07232T was 4.02 Mbp, and the DNA G+C content was 69.26 mol%. The average nucleotide identity (ANIm ≤84.85 % and ANIb ≤76.08  %) and digital DNA-DNA hybridization (≤ 21.9 %) values between strain SYSU G07232T and the reference species were lower than the threshold values recommended for distinguishing novel prokaryotic species. Thus, based on the provided phenotypic, phylogenetic, and genetic data, it is proposed that strain SYSU G07232T (=KCTC 8141T=GDMCC 1.4178T) be designated as representing a novel species within the genus Chelatococcus, named Chelatococcus albus sp. nov.


Asunto(s)
Beijerinckiaceae , Manantiales de Aguas Termales , Filogenia , ARN Ribosómico 16S/genética , Composición de Base , China , Ácidos Grasos/química , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Bacterias
3.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38365241

RESUMEN

Ammonia-oxidizing Nitrososphaeria are among the most abundant archaea on Earth and have profound impacts on the biogeochemical cycles of carbon and nitrogen. In contrast to these well-studied ammonia-oxidizing archaea (AOA), deep-branching non-AOA within this class remain poorly characterized because of a low number of genome representatives. Here, we reconstructed 128 Nitrososphaeria metagenome-assembled genomes from acid mine drainage and hot spring sediment metagenomes. Comparative genomics revealed that extant non-AOA are functionally diverse, with capacity for carbon fixation, carbon monoxide oxidation, methanogenesis, and respiratory pathways including oxygen, nitrate, sulfur, or sulfate, as potential terminal electron acceptors. Despite their diverse anaerobic pathways, evolutionary history inference suggested that the common ancestor of Nitrososphaeria was likely an aerobic thermophile. We further surmise that the functional differentiation of Nitrososphaeria was primarily shaped by oxygen, pH, and temperature, with the acquisition of pathways for carbon, nitrogen, and sulfur metabolism. Our study provides a more holistic and less biased understanding of the diversity, ecology, and deep evolution of the globally abundant Nitrososphaeria.


Asunto(s)
Amoníaco , Archaea , Amoníaco/metabolismo , Temperatura , Archaea/genética , Archaea/metabolismo , Oxidación-Reducción , Nitrógeno/metabolismo , Azufre/metabolismo , Concentración de Iones de Hidrógeno , Filogenia
4.
ISME J ; 17(11): 2112-2122, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37741957

RESUMEN

High-temperature geothermal springs host simplified microbial communities; however, the activities of individual microorganisms and their roles in the carbon cycle in nature are not well understood. Here, quantitative stable isotope probing (qSIP) was used to track the assimilation of 13C-acetate and 13C-aspartate into DNA in 74 °C sediments in Gongxiaoshe Hot Spring, Tengchong, China. This revealed a community-wide preference for aspartate and a tight coupling between aspartate incorporation into DNA and the proliferation of aspartate utilizers during labeling. Both 13C incorporation into DNA and changes in the abundance of taxa during incubations indicated strong resource partitioning and a significant phylogenetic signal for aspartate incorporation. Of the active amplicon sequence variants (ASVs) identified by qSIP, most could be matched with genomes from Gongxiaoshe Hot Spring or nearby springs with an average nucleotide similarity of 99.4%. Genomes corresponding to aspartate primary utilizers were smaller, near-universally encoded polar amino acid ABC transporters, and had codon preferences indicative of faster growth rates. The most active ASVs assimilating both substrates were not abundant, suggesting an important role for the rare biosphere in the community response to organic carbon addition. The broad incorporation of aspartate into DNA over acetate by the hot spring community may reflect dynamic cycling of cell lysis products in situ or substrates delivered during monsoon rains and may reflect N limitation.


Asunto(s)
Manantiales de Aguas Termales , Manantiales de Aguas Termales/química , Filogenia , Aminoácidos , Ácido Aspártico , Isótopos , ADN , Acetatos
5.
Antonie Van Leeuwenhoek ; 116(9): 845-853, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37247101

RESUMEN

A novel actinomycete, designated strain q2T, was isolated from the saline-alkaline soil, collected from Daqing, Heilongjiang province, China. The results of phylogenetic analysis based on the 16S rRNA gene sequences indicated that strain q2T belongs to the genus Isoptericola, and showed the highest sequence similarity to Isoptericola halotolerans KCTC 19046T (98.48%) and Isoptericola chiayiensis KCTC 19740T (98.13%), respectively. The average nucleotide identity values between strain q2T and other members of the genus Isoptericola were lower than 95% recommended for distinguishing novel prokaryotic species. Cells of strain q2T were Gram-staining-positive, aerobic, non-motile, rod-shaped and non-spore-forming. Colonies of strain q2T were golden-yellow pigmented, tidy edged and smooth surfaced. Growth occurred at 15-37 °C (optimum, 29 °C), pH 7.0-10.0 (optimum, pH 8.0). The predominant respiratory quinones were MK-9(H4) and MK-9(H2). The main detected polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, and phosphatidylinositol mannoside. The peptidoglycan compositions were L-alanine, D-aspartic, L-glutamic acid and L-lysine (type A4α). The major cellular fatty acids (> 10%) were anteiso-C15:0, iso-C15:0, and anteiso-C17:0. The G+C content of the genomic DNA was determined to be 69.7%. Based on the phenotypic, physiological, genotypic, and phylogenetic data, strain q2T represents a novel species of the genus Isoptericola, for which the name Isoptericola croceus sp. nov. is proposed. The type strain is q2T (= GDMCC 1.2923T = KCTC 49759T).


Asunto(s)
Actinobacteria , Actinomycetales , Fosfolípidos/análisis , Filogenia , ARN Ribosómico 16S/genética , Suelo/química , ADN Bacteriano/química , Ácidos Grasos/análisis , Análisis de Secuencia de ADN , Técnicas de Tipificación Bacteriana
6.
Artículo en Inglés | MEDLINE | ID: mdl-37204219

RESUMEN

An isolate, designated CFH 74404T, was recovered from a hot spring in Tengchong, Yunnan province, PR China. Phylogenetic analysis indicated that the isolate belongs to the family Thermomicrobiaceae and showed the highest 16S rRNA gene sequence similarity to Thermorudis peleae KI4T (93.6 %), Thermorudis pharmacophila WKT50.2T (93.1 %), Thermomicrobium roseum DSM 5159T (92.0 %) and Thermomicrobium carboxidum KI3T (91.7 %). The average amino acid identity and average nucleotide identity values between strain CFH 74404T and the closest relatives were 42.0-75.9 % and 67.0-77.3 %, respectively. Cells of strain CFH 74404T stained Gram-positive and were aerobic, non-motile and short rod-shaped. Growth occurred at 20-65 °C (optimum, 55 °C), pH 6.0-8.0 (optimum, pH 7.0) and with up to 2.0 % (w/v) NaCl (optimum 0-1.0 %, w/v). The predominant respiratory quinone was MK-8. The major fatty acids (>10 %) were C18 : 0 (50.8 %) and C20 : 0 (16.8 %). The polar lipid profile of strain CFH 74404T included diphosphatidylglycerol, four unidentified phosphoglycolipids, phosphatidylinositol and three unidentified glycolipids. The G+C content of the genomic DNA was determined to be 67.1 mol% based on the draft genome sequence. On the basis of phenotypic, phylogenetic and genotypic analyses, it is concluded that strain CFH 74404T represents a new species of a novel genus Thermalbibacter of the family Thermomicrobiaceae, for which the name Thermalbibacter longus gen. nov., sp. nov. is proposed. The type strain is CFH 74404T (=KCTC 62930T=CGMCC 1.61585T).


Asunto(s)
Ácidos Grasos , Manantiales de Aguas Termales , Ácidos Grasos/química , Fosfolípidos/química , Filogenia , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Composición de Base , China , Técnicas de Tipificación Bacteriana , Análisis de Secuencia de ADN
7.
ISME J ; 17(7): 993-1003, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37069235

RESUMEN

The recent discovery of Nitrospira species capable of complete ammonia oxidation (comammox) in non-marine natural and engineered ecosystems under mesothermal conditions has changed our understanding of microbial nitrification. However, little is known about the occurrence of comammox bacteria or their ability to survive in moderately thermal and/or hyperthermal habitats. Here, we report the wide distribution of comammox Nitrospira in five terrestrial hot springs at temperatures ranging from 36 to 80°C and provide metagenome-assembled genomes of 11 new comammox strains. Interestingly, the identification of dissimilatory nitrate reduction to ammonium (DNRA) in thermophilic comammox Nitrospira lineages suggests that they have versatile ecological functions as both sinks and sources of ammonia, in contrast to the described mesophilic comammox lineages, which lack the DNRA pathway. Furthermore, the in situ expression of key genes associated with nitrogen metabolism, thermal adaptation, and oxidative stress confirmed their ability to survive in the studied hot springs and their contribution to nitrification in these environments. Additionally, the smaller genome size and higher GC content, less polar and more charged amino acids in usage profiles, and the expression of a large number of heat shock proteins compared to mesophilic comammox strains presumably confer tolerance to thermal stress. These novel insights into the occurrence, metabolic activity, and adaptation of comammox Nitrospira in thermal habitats further expand our understanding of the global distribution of comammox Nitrospira and have significant implications for how these unique microorganisms have evolved thermal tolerance strategies.


Asunto(s)
Compuestos de Amonio , Manantiales de Aguas Termales , Amoníaco/metabolismo , Ecosistema , Oxidación-Reducción , Bacterias/genética , Bacterias/metabolismo , Nitrificación , Compuestos de Amonio/metabolismo , Nitratos/metabolismo , Filogenia , Archaea/genética
8.
ISME J ; 17(7): 952-966, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37041326

RESUMEN

Although the phylum Chloroflexota is ubiquitous, its biology and evolution are poorly understood due to limited cultivability. Here, we isolated two motile, thermophilic bacteria from hot spring sediments belonging to the genus Tepidiforma and class Dehalococcoidia within the phylum Chloroflexota. A combination of cryo-electron tomography, exometabolomics, and cultivation experiments using stable isotopes of carbon revealed three unusual traits: flagellar motility, a peptidoglycan-containing cell envelope, and heterotrophic activity on aromatics and plant-associated compounds. Outside of this genus, flagellar motility has not been observed in Chloroflexota, and peptidoglycan-containing cell envelopes have not been described in Dehalococcoidia. Although these traits are unusual among cultivated Chloroflexota and Dehalococcoidia, ancestral character state reconstructions showed flagellar motility and peptidoglycan-containing cell envelopes were ancestral within the Dehalococcoidia, and subsequently lost prior to a major adaptive radiation of Dehalococcoidia into marine environments. However, despite the predominantly vertical evolutionary histories of flagellar motility and peptidoglycan biosynthesis, the evolution of enzymes for degradation of aromatics and plant-associated compounds was predominantly horizontal and complex. Together, the presence of these unusual traits in Dehalococcoidia and their evolutionary histories raise new questions about the timing and selective forces driving their successful niche expansion into global oceans.


Asunto(s)
Chloroflexi , Peptidoglicano , Filogenia , Peptidoglicano/metabolismo , Bacterias , Fenotipo
9.
mSystems ; 8(2): e0125222, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-36943058

RESUMEN

"Candidatus Parvarchaeales" microbes, representing a DPANN archaeal group with limited metabolic potential and reliance on hosts for their growth, were initially found in acid mine drainage (AMD). Due to the lack of representatives, however, their ecological roles and adaptation to extreme habitats such as AMD as well as how they diverge across the lineage remain largely unexplored. By applying genome-resolved metagenomics, 28 Parvarchaeales-associated metagenome-assembled genomes (MAGs) representing two orders and five genera were recovered. Among them, we identified three new genera and proposed the names "Candidatus Jingweiarchaeum," "Candidatus Haiyanarchaeum," and "Candidatus Rehaiarchaeum," with the former two belonging to a new order, "Candidatus Jingweiarchaeales." Further analyses of the metabolic potentials revealed substantial niche differentiation between Jingweiarchaeales and Parvarchaeales. Jingweiarchaeales may rely on fermentation, salvage pathways, partial glycolysis, and the pentose phosphate pathway (PPP) for energy conservation reservation, while the metabolic potentials of Parvarchaeales might be more versatile. Comparative genomic analyses suggested that Jingweiarchaeales favor habitats with higher temperatures and that Parvarchaeales are better adapted to acidic environments. We further revealed that the thermal adaptation of these lineages, especially Haiyanarchaeum, might rely on genomic features such as the usage of specific amino acids, genome streamlining, and hyperthermophile featured genes such as rgy. Notably, the adaptation of Parvarchaeales to acidic environments was possibly driven by horizontal gene transfer (HGT). The reconstruction of ancestral states demonstrated that both may have originated from thermal and neutral environments and later spread to mesothermal and acidic environments. These evolutionary processes may also be accompanied by adaptation to oxygen-rich environments via HGT. IMPORTANCE "Candidatus Parvarchaeales" microbes may represent a lineage uniquely distributed in extreme environments such as AMD and hot springs. However, little is known about the strategies and processes of how they adapted to these extreme environments. By the discovery of potential new order-level lineages, "Ca. Jingweiarchaeales," and in-depth comparative genomic analysis, we unveiled the functional differentiation of these lineages. Furthermore, we show that the adaptation of these lineages to high-temperature and acidic environments was driven by different strategies, with the former relying more on genomic characteristics such as genome streamlining and amino acid compositions and the latter relying more on the acquisition of genes associated with acid tolerance. Finally, by the reconstruction of the ancestral states of the optimal growth temperature (OGT) and isoelectric point (pI), we showed the potential evolutionary process of Parvarchaeales-related lineages with regard to the shift from the high-temperature environment of their common ancestors to low-temperature (potentially acidic) environments.


Asunto(s)
Evolución Biológica , Metagenoma , Metagenoma/genética , Filogenia , Adaptación Fisiológica/genética , Archaea/genética , Ácidos/metabolismo , Aminoácidos/genética
10.
Nat Microbiol ; 8(4): 727-744, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36928026

RESUMEN

Candidate bacterial phylum Omnitrophota has not been isolated and is poorly understood. We analysed 72 newly sequenced and 349 existing Omnitrophota genomes representing 6 classes and 276 species, along with Earth Microbiome Project data to evaluate habitat, metabolic traits and lifestyles. We applied fluorescence-activated cell sorting and differential size filtration, and showed that most Omnitrophota are ultra-small (~0.2 µm) cells that are found in water, sediments and soils. Omnitrophota genomes in 6 classes are reduced, but maintain major biosynthetic and energy conservation pathways, including acetogenesis (with or without the Wood-Ljungdahl pathway) and diverse respirations. At least 64% of Omnitrophota genomes encode gene clusters typical of bacterial symbionts, suggesting host-associated lifestyles. We repurposed quantitative stable-isotope probing data from soils dominated by andesite, basalt or granite weathering and identified 3 families with high isotope uptake consistent with obligate bacterial predators. We propose that most Omnitrophota inhabit various ecosystems as predators or parasites.


Asunto(s)
Nanopartículas Calcificantes , Microbiota , Humanos , Nanopartículas Calcificantes/metabolismo , Bacterias/metabolismo , Microbiota/genética
11.
Artículo en Inglés | MEDLINE | ID: mdl-36748593

RESUMEN

A novel anaerobic bacterium, designated SYSU GA19001T, was isolated from a hot spring sediment sample. Phylogenetic analysis indicated that the isolate belongs to the genus Clostridium, and showed the highest sequence similarity to Clostridium swellfunianum CICC 10730T (96.63 %) and Clostridium prolinivorans PYR-10T (96.11 %). Cells of strain SYSU GA19001T were Gram-stain-positive, spore-forming, rod-shaped (0.6-0.8×2.6-4.0 µm) and motile. Growth was observed at pH 5.0-9.0 (optimum, pH 7.0), 37-55 °C (optimum, 45 °C) and in NaCl concentrations of 0-2.0 % (optimum, 0 %). The genomic DNA G+C content was 31.62 %. The major cellular fatty acids of strain SYSU GA19001T were C14 : 0, iso-C15 : 0, C16 : 0 and summed feature 8. The prominent polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol. Meso-diaminopimelic acid was the diamino acid in peptidoglycan. Based on the results of phylogenetic, chemotaxonomic and phenotypic analyses, strain SYSU GA19001T represents a novel species of the genus Clostridium, for which the name Clostridium caldaquaticum sp. nov. is proposed. The type strain of the proposed novel species is SYSU GA19001T (=NBRC 115040T= CGMCC 1.17864T).


Asunto(s)
Ácidos Grasos , Manantiales de Aguas Termales , Ácidos Grasos/química , Fosfolípidos/química , Manantiales de Aguas Termales/microbiología , Filogenia , Composición de Base , ADN Bacteriano/genética , ARN Ribosómico 16S/genética , Técnicas de Tipificación Bacteriana , Análisis de Secuencia de ADN , Clostridium
12.
Environ Microbiome ; 18(1): 4, 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36639807

RESUMEN

BACKGROUND: The microbiome of the Sinai Desert farming system plays an important role in the adaptive strategy of growing crops in a harsh, poly-extreme, desert environment. However, the diversity and function of microbial communities under this unfavorable moisture and nutritional conditions have not yet been investigated. Based on culturomic and metagenomic methods, we analyzed the microbial diversity and function of a total of fourteen rhizosphere soil samples (collected from twelve plants in four farms of the Sinai desert), which may provide a valuable and meaningful guidance for the design of microbial inoculants. RESULTS: The results revealed a wide range of microbial taxa, including a high proportion of novel undescribed lineages. The composition of the rhizosphere microbial communities differed according to the sampling sites, despite similarities or differences in floristics. Whereas, the functional features of rhizosphere microbiomes were significantly similar in different sampling sites, although the microbial communities and the plant hosts themselves were different. Importantly, microorganisms involved in ecosystem functions are different between the sampling sites, for example nitrogen fixation was prevalent in all sample sites while microorganisms responsible for this process were different. CONCLUSION: Here, we provide the first characterization of microbial communities and functions of rhizosphere soil from the Sinai desert farming systems and highlight its unexpectedly high diversity. This study provides evidence that the key microorganisms involved in ecosystem functions are different between sampling sites with different environment conditions, emphasizing the importance of the functional microbiomes of rhizosphere microbial communities. Furthermore, we suggest that microbial inoculants to be used in future agricultural production should select microorganisms that can be involved in plant-microorganism interactions and are already adapted to a similar environmental setting.

13.
Microbiol Res ; 266: 127214, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36215809

RESUMEN

Microbes are widespread in the sea that covers more than two-thirds of the earth's surface and most microorganisms living in the marine environment have yet to be cultured. Previous studies showed that drying treatment, a strategy of sample pre-treatment widely applied in microbial isolation and incubation, may alter the cultivable microbial diversity, such as Actinomycetota, essential for exploring novel secondary metabolites from the marine environment, isolated from drying-treated samples. However, whether drying treatments actually can change microbial community diversity and how the drying treatments of samples influence the cultivable microbial diversity of marine samples have not yet adequately been evaluated. Here, three marine sediment samples were dried and incubated at 28 ºC, 37 ºC, and 45 ºC, and the microbial diversity was assessed with high-throughput sequencing. Our results suggested that drying treatments had different effects on different genera and some potential novel species could be cultured only from drying-treated samples, including the novel members from the families Paenibacillaceae and Thermoactinomycetaceae. Non-metric multidimensional scaling analysis showed that the treated samples were clustered according to the cultivation temperatures rather than the drying conditions at high cultivation temperatures. However, at the cultivation temperatures of 28 ºC, drying treatments were the larger separation between cultivable microbial communities in the process of microbial isolation. These results showed that the drying treatments influenced the cultivated microbes in a taxon-specific pattern and extended potential novel taxa. Combining high-throughput sequencing to various drying conditions and incubation temperatures, this study provides new insight into the effects of drying treatment on the cultivable microbial diversity of marine sediments.


Asunto(s)
Microbiota , Agua de Mar , Humanos , Biodiversidad , Bacterias , Sedimentos Geológicos , ARN Ribosómico 16S/genética
15.
Ying Yong Sheng Tai Xue Bao ; 33(11): 2971-2978, 2022 Oct.
Artículo en Chino | MEDLINE | ID: mdl-36384831

RESUMEN

Understanding the responses of soil enzyme activities to elevated CO2 concentration and warming can provide a scientific basis for nutrient management of croplands under global climate change. We conducted a pot expe-riment with climate chamber to examine the effects of elevated CO2 concentration and warming and winter wheat growth on soil enzyme activities. There were four climate scenarios: control (CK, 400 µmol·mol-1 CO2 concentration+normal ambient temperature), and CO2 concentration elevation (ECO2, 800 µmol·mol-1 CO2 concentration+normal ambient temperature), elevated temperature (ET, 400 µmol·mol-1 + temperature increased 4 ℃), and elevated CO2 concentration and temperature (ECO2+T, 800 µmol·mol-1 CO2 concentration + temperature increased 4 ℃). We measured the activities of soil ß-glucosidase (ßG), ß-N-acetyl glucosidase (NAG), alkaline phosphate (ALP) and polyphenol oxidase (PPO) at four growth stages (JS, jointing stage; AS, anthesis stage; FS, filling stage and MS, maturity stage), with and without winter wheat planting. Without winter wheat planting, there was no significant difference in four kinds of soil enzyme activities between ECO2 and CK, while ET and ECO2+T treatments had significant negative effect on soil enzyme activities. With winter wheat planting, compared with CK, ECO2 and ECO2+T treatments did not affect the activities of those four soil enzyme; but the ET treatment had great impact on soil ALP and PPO activities. The activities of four kinds of soil enzyme were significantly diffe-rent between the ET and ECO2+T treatments. Compared with ET treatment, ECO2+T treatment increased soil ßG activity at the JS, decreased NAG activity at the JS, increased ALP activity at both AS and FS, decreased PPO activity in the JS and increased in the AS. The interaction of elevated CO2 concentration and warming had significant effect on soil NAG and ALP activities with and without winter wheat planting. The interaction of warming and expe-rimental stage had significant effect on four kinds of soil enzyme activities without winter wheat planting, but the interaction of warming and crop growth stage had significant effect on ALP and PPO activities with winter wheat planting. The interaction of elevated CO2 concentration, warming and experimental period had significant effect on soil ßG, ALP and PPO activities without winter wheat growth, while with winter wheat growth, it had significant impact on NAG, ALP and PPO activities. The winter wheat growth had significantly inhibitory effect on ßG, NAG and ALP activities in the two early growth periods (JS+AS), significant promoting effect in the later growth periods (FS+MS), and significantly inhibitory effect on PPO activity during whole growth period. Overall, elevated CO2 concentration did not affect soil enzyme activities, while the elevation of CO2 concentration and temperature on soil enzyme activities differed among the soil enzymes at different growth stages. In addition, the responses of four soil enzyme activities to the interaction of elevated CO2 concentration and warming varied with and without winter wheat planting.


Asunto(s)
Suelo , Triticum , Dióxido de Carbono , Estaciones del Año , Temperatura
16.
Microbiome ; 10(1): 172, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36242054

RESUMEN

BACKGROUND: Candidatus Nanohaloarchaeota, an archaeal phylum within the DPANN superphylum, is characterized by limited metabolic capabilities and limited phylogenetic diversity and until recently has been considered to exclusively inhabit hypersaline environments due to an obligate association with Halobacteria. Aside from hypersaline environments, Ca. Nanohaloarchaeota can also have been discovered from deep-subsurface marine sediments. RESULTS: Three metagenome-assembled genomes (MAGs) representing a new order within the Ca. Nanohaloarchaeota were reconstructed from a stratified salt crust and proposed to represent a novel order, Nucleotidisoterales. Genomic features reveal them to be anaerobes capable of catabolizing nucleotides by coupling nucleotide salvage pathways with lower glycolysis to yield free energy. Comparative genomics demonstrated that these and other Ca. Nanohaloarchaeota inhabiting saline habitats use a "salt-in" strategy to maintain osmotic pressure based on the high proportion of acidic amino acids. In contrast, previously described Ca. Nanohaloarchaeota MAGs from geothermal environments were enriched with basic amino acids to counter heat stress. Evolutionary history reconstruction revealed that functional differentiation of energy conservation strategies drove diversification within Ca. Nanohaloarchaeota, further leading to shifts in the catabolic strategy from nucleotide degradation within deeper lineages to polysaccharide degradation within shallow lineages. CONCLUSIONS: This study provides deeper insight into the ecological functions and evolution of the expanded phylum Ca. Nanohaloarchaeota and further advances our understanding on the functional and genetic associations between potential symbionts and hosts. Video Abstract.


Asunto(s)
Archaea , Euryarchaeota , Aminoácidos Acídicos/genética , Aminoácidos Acídicos/metabolismo , Aminoácidos Básicos/genética , Aminoácidos Básicos/metabolismo , Euryarchaeota/genética , Metagenoma , Nucleótidos/metabolismo , Filogenia , Polisacáridos/metabolismo
17.
Syst Appl Microbiol ; 45(6): 126361, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36209634

RESUMEN

Biological denitrification is a significant process in nitrogen biogeochemical cycle of terrestrial geothermal environments, and Thermus species have been shown to be crucial heterotrophic denitrifier in hydrothermal system. Five Gram-stain negative, aerobic and rod-shaped thermophilic bacterial strains were isolated from hot spring sediments in Tibet, China. Phylogenetic analysis based on 16S rRNA gene and whole genome sequences indicated that these isolates should be assigned to the genus Thermus and were most closely related to Thermus caldifontis YIM 73026T, and Thermus brockianus YS38T. Average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between the five strains and the type strains of the genus Thermus were lower than the threshold values (95% and 70%, respectively) recommended for bacterial species, which clearly distinguished the five isolates from other species of the genus Thermus and indicated that they represent independent species. Colonies are circular, convex, non-transparent. Cell growth occurred at 37-80 °C (optimum, 60-65 °C), pH 6.0-8.0 (optimum, pH 7.0) and with 0-2.0% (w/v) NaCl (optimum, 0-0.5%). Denitrification genes (narG, nirK, nirS, and norB genes) detected in their genomes indicated their potential function in nitrogen metabolism. The obtained results combined with those of morphological, physiological, and chemotaxonomic characteristics, including the menaquinones, polar lipids, and cellular fatty acids showed that the isolates are proposed as representing five novel species of the genus Thermus, which are proposed as Thermus hydrothermalis sp. nov. SYSU G00291T, Thermus neutrinimicus sp. nov. SYSU G00388T, Thermus thalpophilus sp. nov. SYSU G00506T, Thermus albus sp. nov. SYSU G00608T, Thermus altitudinis sp. nov. SYSU G00630T.


Asunto(s)
Manantiales de Aguas Termales , Manantiales de Aguas Termales/microbiología , ARN Ribosómico 16S/genética , Filogenia , Composición de Base , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Análisis de Secuencia de ADN , Fosfolípidos/análisis , Thermus , Ácidos Grasos/análisis , Bacterias/genética , Nitrógeno
18.
Curr Microbiol ; 79(10): 310, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-36088394

RESUMEN

A motile, rod-shaped and yellow-coloured bacterium, designated strain SYSU D60001T, was isolated from a desert soil sample. Cells were Gram-stain-negative, catalase-negative and oxidase-positive. The major cellular fatty acids were summed feature 8 (C18:1 ω7c and/or C18:1 ω6c) and C16:0. The respiratory quinone was ubiquinone-10. The genomic DNA G+C content was 68%. The polar lipids detected were diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, an unidentified phospholipid and five unidentified polar lipids. Phylogenetic analysis based on the 16S rRNA gene sequences revealed that strain SYSU D60001T represents a novel species of the genus Sphingosinicella, with closely related strains Sphingosinicella ginsenosidimutans BS1T (95.81%), Sphingomonas deserti GL-C-18T (95.75%) and Sphingosinicella humi QZX222T (95.18%). Data from polyphasic taxonomy study suggest that the isolate represents a novel species in the genus Sphingosinicella, for which the name Sphingosinicella terrae sp. nov. is proposed. The type strain of the proposed new taxon is SYSU D60001T (= DSM 104938T = KCTC 52780T = NBRC 112955T). We also propose the reclassification of Sphingomonas deserti as Sphingosinicella deserti comb. nov.


Asunto(s)
Alphaproteobacteria , Sphingomonas , Alphaproteobacteria/genética , ADN Bacteriano/genética , Fosfolípidos , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Suelo , Microbiología del Suelo
20.
Curr Microbiol ; 79(10): 301, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36002665

RESUMEN

A novel bacterium, designated strain APA_H-1(4)T, was isolated from the saline-alkaline soil, Zhaodong, Heilongjiang Province, China. Phenotypic and chemotaxonomic analyses, and whole-genome sequencing were used to determine the taxonomic position of the strain. Phylogenetic analysis indicated that the isolate belongs to the genus Oceanobacillus, and showed the highest sequence similarity to O. damuensis KCTC 33146T (98.35%, similarity) and 'O. massiliensis' DSM 24644 (98.32%). The average nucleotide identity values between strain APA_H-1(4)T and other members of the genus Oceanobacillus were lower than 82% recommended for distinguishing novel prokaryotic species. The digital DNA-DNA hybridization values of strain APA_H-1(4)T with O. damuensis KCTC 33146T and 'O. massiliensis' DSM 24644 were 13.60 and 17.60%, respectively. Cells of strain APA_H-1(4)T were Gram-staining positive, motile, aerobic, spore-forming rods (0.5-0.7 × 1.8-2.6 µm) with flagella. The growth was found to occur optimally at 37 °C. The whole-cell hydrolysate contained meso-diaminopimelic acid as the diagnostic cell wall diamino acid. The main detected polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, an unidentified phospholipid and an unidentified polar lipid. The predominant respiratory quinone was identified as menaquinone-7 (MK-7). The major cellular fatty acid (>10%) was anteiso-C15:0. The G + C content of the genomic DNA was determined to be 38.4% based on the draft genome sequence. Based on the comparative analysis of polyphasic taxonomic data, strain APA_H-1(4)T represents a novel species of the genus Oceanobacillus, for which the name Oceanobacillus saliphilus sp. nov. is proposed. The type strain is APA_H-1(4)T (=GDMCC 1.2239T = KCTC 43254T).


Asunto(s)
Bacillaceae , Suelo , Álcalis , Técnicas de Tipificación Bacteriana , China , ADN Bacteriano/química , ADN Bacteriano/genética , Ácidos Grasos/química , Fosfolípidos/química , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...